Patupilone induced vascular disruption in orthotopic rodent tumor models detected by magnetic resonance imaging and interstitial fluid pressure.
نویسندگان
چکیده
PURPOSE Evaluation of vascular disruptive activity in orthotopic models as potential surrogate biomarkers of tumor response to the microtubule-stabilizing agent patupilone. EXPERIMENTAL DESIGN Mice bearing metastatic B16/BL6 melanoma and rats bearing mammary BN472 tumors received vehicle or efficacious patupilone doses (4 and 0.8-1.5 mg/kg i.v., respectively). Tumor vascularity assessment by dynamic contrast-enhanced or dynamic susceptibility contrast magnetic resonance imaging and interstitial fluid pressure (IFP) occurred at baseline, 2 days (mice and rats), and 6 days (rats) after treatment and were compared with histologic measurements and correlated with tumor response. RESULTS In B16/BL6 metastases, patupilone (4 mg/kg) induced a 21 +/- 5% decrease (P < 0.001) in tumor blood volume and a 32 +/- 15% decrease (P = 0.02) in IFP after 2 days and reduced tumor growth and vessel density (>42%) after 2 weeks (P < or = 0.014). Patupilone dose-dependently inhibited BN472 tumor growth (day 6) and reduced IFP on days 2 and 6 (-21% to -70%), and the percentage change in IFP correlated (P < 0.01) with the change in tumor volume. In both models, histology and vascular casts confirmed decreases in tumor blood volume. One patupilone (0.8 mg/kg) administration decreased (P < 0.01) tumor IFP (54 +/- 4%), tumor blood volume (50 +/- 6%), and vessel diameter (40 +/- 11%) by day 6 but not the apparent diffusion coefficient, whereas histology showed that apoptosis was increased 2.4-fold and necrosis was unchanged. Apoptosis correlated negatively (P < 0.001) with IFP, tumor blood volume, and tumor volume, whereas tumor blood volume and IFP were correlated positively (P = 0.0005). CONCLUSIONS Vascular disruptive effects of patupilone were detected in situ using dynamic contrast-enhanced or dynamic susceptibility contrast magnetic resonance imaging and IFP. Changes in IFP preceded and correlated with tumor response, suggesting that IFP may be a surrogate biomarker for patupilone efficacy.
منابع مشابه
Quantified tumor t1 is a generic early-response imaging biomarker for chemotherapy reflecting cell viability.
PURPOSE Identification of a generic response biomarker by comparison of chemotherapeutics with different action mechanisms on several noninvasive biomarkers in experimental tumor models. EXPERIMENTAL DESIGN The spin-lattice relaxation time of water protons (T(1)) was quantified using an inversion recovery-TrueFISP magnetic resonance imaging method in eight different experimental tumor models ...
متن کاملNoninvasive magnetic resonance imaging of transport and interstitial fluid pressure in ectopic human lung tumors.
Tumor response to blood borne drugs is critically dependent on the efficiency of vascular delivery and transcapillary transfer. However, increased tumor interstitial fluid pressure (IFP) forms a barrier to transcapillary transfer, leading to resistance to drug delivery. We present here a new, noninvasive method which estimates IFP and its spatial distribution in vivo using contrast-enhanced mag...
متن کاملDynamic contrast enhanced magnetic resonance imaging of an orthotopic pancreatic cancer mouse model.
Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) has been limitedly used for orthotopic pancreatic tumor xenografts due to severe respiratory motion artifact in the abdominal area. Orthotopic tumor models offer advantages over subcutaneous ones, because those can reflect the primary tumor microenvironment affecting blood supply, neovascularization, and tumor cell invasion. We have...
متن کاملThalidomide radiosensitizes tumors through early changes in the tumor microenvironment.
PURPOSE The aim of this work was to study changes in the tumor microenvironment early after an antiangiogenic treatment using thalidomide (a promising angiogenesis inhibitor in a variety of cancers), with special focus on a possible "normalization" of the tumor vasculature that could be exploited to improve radiotherapy. EXPERIMENTAL DESIGN Tumor oxygenation, perfusion, permeability, intersti...
متن کاملMolecular and Cellular Pathobiology Mild Elevation of Body Temperature Reduces Tumor Interstitial Fluid Pressure and Hypoxia and Enhances Efficacy of Radiotherapy in Murine Tumor Models
Human and rodent solid tumors often exhibit elevated interstitial fluid pressure (IFP). This condition is recognized as a prognostic indicator for reduced responses to therapy and decreased disease-free survival rate. In the present study, we tested whether induction of a thermoregulatory-mediated increase in tissue blood flow, induced by exposure of mice to mild environmental heat stress, coul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 11 21 شماره
صفحات -
تاریخ انتشار 2005